2

COMPUTATIONAL THINKING TODAY

Shuchi Grover

Introduction: From Academia to Mainstream

Daily news reflects the spirit of a time. Words and phrases appearing in main-
stream media are an indicator of the prevailing ideas of an age. Google News,
which indexes daily mainstream news articles from all over the world could
therefore be considered a reliable indicator of the zeitgeist — in a way that nei-
ther Google Search nor Google Scholar is. The appearance of the phrase “com-
putational thinking” in Google News articles in the January to August period
of 2020 has grown by more than a factor of 10 from the same time window in
2013 — from the meager 35 or so articles (spread over 3 pages of Google News
results) in 2013 to about 260 over 26 pages of results in 2020. The only logical
conclusion is that the idea of computational thinking, or CT, is increasingly
becoming a part of mainstream consciousness.

The choice of 2013 as a comparison to today is only somewhat arbitrary.
By 2013, there was a healthy awareness of CT in the computer science (CS)
education research world with about 100 pages of results on Google Scholar
displaying roughly 1,000 articles (compared to the 35 articles in mainstream
publishing and news sites). It was in 2013 that Code.org was launched, and with
it came a significant fillip to computing education at the national policy level in
the US as well as globally. It was the year Simon Peyton-Jones’ keynote at SIG-
PLAN talked about Computer Science as a School Subject. And of course, it was
also the year that Grover and Pea’s (2013) “state of the field” paper on CT ap-
peared in the January issue of Educational Researcher, the prestigious flagship
journal of the American Educational Research Association — it was one of the
first papers to interpret Wing (2006)’s definition of CT and describe it to the
broader educational research community as a composite skill with component

DOI: 10.4324/9781003102991-2


http://Code.org
https://doi.org/10.4324/9781003102991-2

Computational Thinking Today 19

elements largely drawn from CS. It was also the year an EdSurge article, Learn-
ing to Code Is Not Enough (Grover, 2013), made the compelling argument that
while programming was indeed a necessary skill for the new age, CS learning
focused on a coding language is not enough unless we also consciously focus on
teaching broader CS ideas and deeper CT skills.

The story of CT’s growth in mainstream consciousness is not just one
of numbers though. Not only has the number of news stories (on Goo-
gle News) grown more than 11-fold in these last seven years, the diver-
sity of news stories bears testament to the spread of CT in many more
realms of human experience. Where once the provenance of CT stories
was largely school education (or K-12 schooling, as we call it here in the
United States), today the sources of new stories include industry (especially
how companies are funding the development of CT skills through partner-
ships with academic entities), current events (such as the UK’s A-level and
GCSE exam-grade debacle in the midst of the Covid-19 pandemic), best-
selling business book titles (such as John Maeda’s “How to Speak Machine:
Computational Thinking for the Rest of Usw”), and drama (in the form of
“Algorithmic Theater”), even as stories from primary and secondary school
education still abound. Perhaps the most telling news stories of CT’s con-
sistent spread in 2020 are ones from higher education. Institutions around
the world are creating new courses that call out CT as a key ingredient
and teach applications of computing and computational techniques (such
as MIT’s Introduction to Computational thinking, Northwestern University’s
MBAI1 program, and Purdue’s new agriculture informatics course) or using
CT in research in novel spaces (for example, the use of CT in gerrymander-
ing research at Boston University), or viewing CT as a key means to inspire
women in Science, Technology, Mathematics and Engineering (STEM) (as
described by the first female director of MIT CSAIL, Daniella Rus).

A few things are amply evident in these news stories. CT has currency
today well beyond K-12 school education where it enjoys healthy support and
has, in fact, helped steer the adoption of computing and programming in pri-
mary and secondary classrooms (Curzon et al., 2020). As these news stories
attest, both in academic and non-academic settings, people describe CT as a
vehicle for engaging with computing and participating in 21st-century careers
and culture. CT is seen as a 21st-century literacy, and as a 21st-century skill
alongside critical thinking, creativity, collaboration, and communication (as
described by Grover, 2018). CT is listed among skill sets that separately call
out programming and digital literacy suggesting there is a distinction drawn
between other digital skills and CT. CT is seen to be synonymous with com-
putational problem-solving, but it is also seen as a means to computational cre-
ation and participation (Kafai, 2016) and computational action (Tissenbaum,
Sheldon, & Abelson, 2019). Some have argued that the explosion of interest
in CT is because it is seen as a problem-solving skillset for everyone, not just



20 Shuchi Grover

programmers or even computer scientists to possess (Curzon et al., 2020). As
we design for pedagogies for teaching computing and CT, we must heed the
fast-changing computing context — the increasingly pernicious possibilities of
biases in algorithms, for example — and use CT as a vehicle for “critical com-
puting” (Ko et al., 2020; Washington, 2020). There is also a need to teach comput-
ing with a focus on C'T so that the skills developed are conceptual and creative, and can
survive the impending onslaught of artificial intelligence and obsolescence of skills such as
vanilla programming.

This chapter traces a brief history of CT in its various flavors and avatars
from the early days of computing to the present day. It describes what CT has
come to mean today, addresses key approaches to engaging learners in CT ex-
periences, and discusses the vast space of CT integration into various learning
contexts and domains including attempts to bring coherence to the discourse
of CT integration. It ends with a reflection on open questions and areas for
further inquiry.

From Knuth to Wing: Computational Thinking as Problem-
Solving and Disciplinary Thinking from/of CS

For many in education, Jeannette Wing’s 2006 article provided the impe-
tus to attend to CT or “thinking like a computer scientist”, as an essential
problem-solving skill for the new generation of learners. Wing’s article reso-
nated with the broader scientific community also because it came on the heels
of enormous activity in the field of science in the early 2000s, where the use of
computational modeling tools and algorithms for working with large datasets
was tangibly transforming the very fabric of science — a new reality that was
compellingly described in the influential “Towards 2020 Science” report (Em-
mott & Rison, 2005).

Although Wing was the first to make a compelling case for CT as a univer-
sal, foundational skill in this age of ubiquitous computing, the idea of “com-
puter science thinking” has been written about sporadically since the 1960s.
Problem-solving practices of CS were discussed as early as 1968 (by G.E.
Forsythe). Among the earliest articles to articulate elements of CS thinking was
Donald Knuth’s Algorithms in Modern Mathematics and Computer Science
(Knuth, 1981), in which he wrestled with the question, “Do most mathemati-
cians have an essentially different thinking process from that of most computer
scientists?” Interestingly, he referred to the thinking processes of computer sci-
entists as “computer science thinking”. Knuth listed key elements of math-
ematical thinking (MT), and compared and contrasted them with elements
of computer science thinking (CST). CST overlapped with MT in the areas
of formula manipulation, representation of reality, reduction to simpler prob-
lems, abstract reasoning, information structures, and algorithms (with formula
manipulation exhibiting only mild connection with CST). He also noted that



Computational Thinking Today 21

generalization and formula manipulation involve the general idea of pattern
recognition. He observed that, unlike MT, CST does not deal with infinity,
and conversely some kinds of CST are not part of MT, namely, (1) dealing with
complexity (since MT does not care about efficiency, economy, or cost of op-
erations) and (2) the dynamic notion of “state” of a process. The thorny issue
of variable “assignment” and its distinction with mathematical equality was the
subject of another Knuth piece — “As we have remarked, mathematicians had
never used such an operator before; in fact, the systematic use of assignments
constitutes a distinct break between computer-science thinking and mathemat-
ical thinking” (Knuth & Pardo, 1980).

A second noteworthy article, in my view, that defines and explains the idea
of CS-related skills and practices as separate from knowledge components is Den-
ning’s (2000) — Computer Science: The Discipline. In addition to discussing key
content topics that comprise computing, Peter Denning outlined “Standard Con-
cerns of the Field” and stated that “every practitioner of the discipline must be
skilled in four basic areas: algorithmic thinking, representation, programming,
and design”. It is useful to note that Denning described programming as taking
“algorithmic thinking and representations and embody them in software that
will cause a machine to perform in a prescribed way. This skill includes working
knowledge of different programming languages (each having its own strengths
and limitations), program development tools (which aid testing, debugging,
modularity, and compatibility)” and design as including “many practical consid-
erations such as engineering tradeoffs, integrating available components, meeting
time and cost constraints, and meeting safety and reliability requirements”.

There is substantial overlap between Denning’s areas of CS “practice” (as
well as Knuth’s elements of CST) and the articulation of CT by K-12 CS edu-
cators and researchers following Wing (2006), including (among others), Gro-
ver and Pea (2013), the Computing At School group in the UK (Csizmadia
etal., 2015), the K-12 National CS Framework in the US (k12¢s.org), and Boc-
coni et al. (2016). They converge on CT as comprising algorithmic thinking,
representation (and abstraction), generalization and pattern recogni-
tion, decomposition, creating programs, debugging and systematic
error processing, and evaluation. There are minor distinctions in that de-
bugging, modularity, and evaluation are sometimes called out separately today
as opposed to being encapsulated in other practices related to programming
and design. However, the idea of a set of CS-inspired problem-solving skills of
which programming is but one (in addition to algorithmic thinking, represen-
tation, and design), is common to all these formulations. Lastly, even though
Wing (2006) made it amply clear, the National Academies Workshops on CT
(NRC, 2010) helped underscore the view that CT is more than programming.
The separation of programming from algorithmic thinking, representation,
and design by Denning (2000) serves to provide an answer to the oft-asked
question, “Is CT any different from programming?”


http://k12cs.org

22 Shuchi Grover

Approaches to Engaging Learners in CT

Today CT is recognized as a set of skills and problem-solving strategies that
have their roots in CS, as well as mathematics, design, and engineering (Shute
et al., 2017). CT has, in fact, been instrumental in the adoption of teaching
CS and programming in K-12 education in many countries around the globe
that have called out CT as a key part of learning computing and programming
(Bocconi et al., 2016; Hubwieser et al., 2015), with India most recently declar-
ing it as part of their 2020 National Education Plan. CT pedagogy within and
across nations usually includes both coding as well as non-coding activities. CT
is also taught and applied in the context of learning other subjects (discussed in
section “Integrating CT in Non-CS Classrooms”), an approach that is seen by
many as promising and productive to ensure more sustained engagement with
CT. See Chapter 3 in this volume for a discussion on the progression of CT
learning experiences.

It is important to remember that much like problem solving, CT is a skill or
competency that develops over time (as with all skills) and one-off experi-
ences are insufficient. Also, CT does not really have a “content” component
that needs to be taught. Skills are developed in context, through educa-
tional experiences that require learners to recognize a need for them and
employ them as appropriate. As such, CT can be developed in several learn-
ing contexts, in both CS and non-CS classrooms. It can be taught through
various pedagogical approaches.

CT in CS through Learning Coding

One of the goals of CS learning experiences especially when teaching pro-
gramming should be to engage in CT, and help learners recognize and
use CT skills to aid the problem-solving process. Many CS curricula un-
derscore the need to teach CT as part of programming which is by far the
most popular vehicle to develop CT skills. If taught well, programming helps
learners engage in the elements of CT. However, recent research in block-
based programming environments has shown that learners can create pro-
grams without a robust understanding of programming concepts (Grover,
Jackiw, & Lundh, 2019; Salac & Franklin 2020) or purposefully engaging
in CT. Grover, Pea, and Cooper (2014) argue that an overemphasis on pro-
gramming environments and syntax can result in shallow programming ex-
periences without deeper engagement in CT practices; infusing CT in CS
and learning of programming requires thought and deliberate design to ensure
that learners engage in ways that develop computational habits of mind. For
example, activities and learning experiences can be designed such that learners



Computational Thinking Today 23

are required to consciously engage in algorithmic thinking through planning
code before programming — an exercise that also helps learners appreciate the
layers of abstraction in the context of programming (Armoni, 2013; Bagge &
Grover, 2020; Waite et al., 2018), recognize and appreciate elements of algo-
rithms (sequence, repetition, and selection), problem decomposition, debug-
ging, and pattern recognition across problems. When the curriculum ensures
well-designed engagement with CT, learners understand programming con-
cepts more deeply, are better able to design and create better artifacts and are
able to demonstrate transfer to new programming and problem-solving con-
texts (Grover, 2021b; Pea, 2015; Hutchins et al., 2020a, 2020b).

Sometimes curriculum designers choose to foreground specific CT practices.
For example, Fields and Kafai (2020) center debugging in the learning of CT
and programming. Futschek and Moschitz (2011) focus on building algorithmic
thinking with unplugged activities with cards before they move to Scratch.
Waite and colleagues focus on teaching abstraction through conscious engage-
ment with design and planning in programming (Waite et al., 2018). Dominguez
and colleagues focus on algorithmic thinking, abstraction, and decomposition
as entry points for CT in preschoolers’ activities (Grover, Dominguez, Kamdar,
Vahey, Moorthy, Rafanan & Gracely, 2019; Grover, Dominguez, Kamdar, Le-
ones, Vahey, & Gracely, 2021). Recent research has also proposed a data-centric
approach to developing CT skills (Grover, 2020; Gu, Heller, Li, Ren, Fisler,
& Krishnamurthi, 2020) and in introductory computing more broadly. It is
worth noting that while data abstraction, data organization, and data repre-
sentation are indeed called out as essential aspects of CT (Grover & Pea, 2013;
ISTE/CSTA, 2011), common CT practice in classrooms has thus far tended to
focus on algorithmic thinking. This proclivity for data-centric approaches to
CT however may see a change with the growing attention to data practices and
data science that are now also seen as entry points for Al in K-12 classrooms
(Touretzky et al., 2019).

Engaging in CT through Unplugged and Non-Programming
Activities

There are approaches besides programming that can help learners build CT and
apply CT skills. Unplugged or non-programming activities — that do not use any
computing devices — are popular, especially with younger learners who may not
be familiar with coding. CS Unplugged (Bell et al., 2002; Bell & Vahrenhold,
2018) has been a popular curriculum to teach CS concepts through engaging,
offline activities. CS Unplugged activities also clarify for teachers what CT skills
are embedded in each of their activities. Although some efforts have introduced
children as young as six to programming through software environments like
Scratch Jr and Kodable, and tangible computing tools (e.g., Bers et al., 2014;
Papadakis, Kalogiannakis, & Zaranis, 2016; Weintrop & Grover, 2020), many



24 Shuchi Grover

believe that it is easier to engage younger learners as well as non-specialist pri-
mary grades teachers in ideas of problem decomposition, pattern recognition,
and algorithmic thinking through unplugged activities (Huang & Looi, 2020).
Curzon and McOwan (2017) believe there is a great deal to be gained by look-
ing for a simplified CT progression for younger learners that builds on everyday
ideas that are easily relatable, for example, stories, puzzles, magic tricks, board
games, and even song and dance. However, the idea of algorithmic precision
is one that needs to be reinforced in unplugged settings; this can be demon-
strated by having different students executing the same algorithm and examin-
ing whether the same outcome is achieved every time. There is value in picking
examples that are less susceptible to fall prey to a lack of precision in instructions
(such as the (in)famous peanut butter and jelly sandwich activity). Such precise
activities may include dance routines or rules for how to play simple games
(and pick a winner) or navigating a path on a grid. Curzon et al. (2020) suggest
that as students progress through levels of schooling, precision, completeness,
cohesion, and elegance will improve. Kamdar et al. (2020) found unplugged
activities to be useful in helping preschool learners (ages 3-5), including some
at the preliterate state, by engaging them — both at home and in school — in
algorithmic thinking (often using navigational activities that also build crucial
spatial thinking skills), task decomposition, and abstraction (through sorting
and labeling by grouping multiple objects according to common themes or
characteristics).

Additionally, helping students experience CT and programming concepts
in contexts outside of coding through engagement in unplugged activities and
contexts that are familiar and tractable before they experience them in coding,
has been shown to be beneficial (Hermans & Aivaloglou, 2017). There are ex-
amples of digital (non-programming) microworlds and online games designed
specifically to target one or more aspects of CT skills. For example, in their
research, Grover and colleagues successfully demonstrated the use of designed
non-digital and digital activities to engage learners in the ideas of variable and
variation, multiple forms of operators and expressions (arithmetic, relational,
string, and Boolean), and iteration — ideas that are foundational to CT and
coding (Grover, Jackiw, & Lundh, 2019). Their digital activities drew inspi-
ration from the research of the benefits accruing from conceptual exploration
with dynamic representations in mathematics education such as the Geometer
Sketchpad (Jackiw, 2004).

In a similar vein, there are several digital game-based environments that
help learners engage in elements of CT. Although research on the results of
game-based experiences for learning is mixed, syntheses of the game-based
learning literature have found that games can indeed yield positive learning
outcomes across several learning contexts. Zoombinis (Rowe et al., 2017) is an
example of a game that engages learners in logical and algorithmic thinking.
Taylor et al. (2019) developed a toolkit to fuse block-based programming with



Computational Thinking Today 25

game-based learning to promote CT. Given the social nature of games, game-
based learning is often designed and engineered to also help promote equity
and collaboration (Boyer et al., 2015).

Two key ideas are of utmost importance in the context of unplugged and
non-programming approaches to CT engagement. First, a move from un-
plugged to coding activities at some appropriate juncture or grade level is
absolutely necessary in order for learners to appreciate the power of com-
putation and automation, as well as the specific abstractions (data and
procedural) that play a role in computational solutions. Thinking in layers
of abstraction (Armoni, 2013) helps learners view computational solutions
in different forms and also appreciate the need for data abstractions that
are suited to the task and tool at hand. Programming also affords learners
the opportunities to create and share their own computational creation
thus allowing for computational participation (Kafai, 2016) and computa-
tional action (Tissenbaum, Sheldon, & Abelson, 2019). Such engagement
is seen as beneficial to encourage learner agency and participating in com-
puting for community and self. Second, it is critical that learning designs
help bridge to and from the earlier non-programming experiences and
coding experiences (Curzon & Grover, 2020; Hoyles, 2020) in order to
aid learners in the transfer of learning and making the conceptual links
between experiences.

Unplugged activities have been shown to be beneficial especially for non-
specialist teachers in preparing to integrate CT (Huang & Looi, 2020; Yadav
et al. 2017), and as a result, unplugged activities are often included as part of
teacher professional development (PD) on CT integration (Araujo, Floyd, and
Gadanidis, 2019). Ketelhut et al. (2020) found that teachers want practical ex-
amples of activities they could use to incorporate CT into elementary science
that were either unplugged or used tools that were already available to them.
Section “Open Questions and Need for Further Empirical Inquiry” addresses
open research questions related to unplugged approaches to developing CT skills.

Integrating CT in Non-CS Classrooms

It is in all the contexts outside of CS classrooms that computational
thinking (CT) truly shines with its generativity. From music, maths, so-
cial studies, history, language arts and throughout the sciences and engi-
neering, curricular ideas can come alive with CT.

(Grover & Pea, 2018, p. 32)



26 Shuchi Grover

Many argue that CT in its avatar as a generative problem-solving skill is truly
visible in contexts outside of CS. This practice of CT serves the realm of Com-
putational X — the integration of CT to enable/enrich learning and application
in a whole host of other disciplines, mainly through the vehicle of program-
ming, and automating data and procedural abstractions and models in other
disciplines.

Papert’s use of the phrase Computational Thinking in both Mindstorms
(Papert, 1980) and Situating Constructionism (Papert & Harel, 1991) was made
in passing and never explained. However, one can surmise from the context and
his writings that he meant “thinking with a computer” or using the computer
“as a tool to think with”, to engage with topics/concepts in other disciplines.
In fact, his seminal book and the theses leading up to it were aimed largely
at developing a “mathematical way of thinking (MWOT)” and how children
could use programming to develop MWOT (also see Papert (1972)). However,
Papert’s view of CT was centered on algorithmic or procedural thinking. It
did not delve deeply into how computing could help children build models
involving data, data organization, or data representations; or with abstractions
and generalizations — although these were well within the purview of compu-
tational exploration of mathematical ideas.

In contrast, Andrea diSessa, whose context for computational learning and
computational literacy was science (mostly physics), articulated the value of
using computing to help students’ reasoning, modeling, and abstraction abil-
ities. Representations, and the computer as the “protean mother of meta-
representational systems” (diSessa, 2001, p. 183), were at the heart of diSessa’s
work to help learners engage in multiple representations in order to gain a fuller
and more flexible understanding of the scientific concept at hand. More impor-
tantly, diSessa’s work advocates for not fixating on programming and the com-
puter. In Changing Minds, diSessa (2001) emphasized both the “cognitive” and
“social” aspects of computational literacy. In more recent writing, Li, diSessa,
and colleagues argue for making CT more about thinking than computing be-
cause “the reconceptualization of CT [beyond Wing’s articulation], as a model
of thinking, makes its integration in all education a possibility” (Li et al., 2020).

In the same vein as diSessa, Weintrop, Beheshti, Horn, Orton, Jona,
Trouille, and Wilensky (2016) operationalized the computational model-
ing view of CT based on two decades of research on computer-based sys-
tems modeling led by Uri Wilensky and his research group. They presented
a taxonomy that defined “computational thinking in mathematics and sci-
ence” as including data practices, modeling and simulation practices, com-
putational problem-solving practices (including programming), and systems
thinking practices. Several projects, especially those in science contexts that
involve modeling and simulation and/or a focus on data practices benefit from
this taxonomy. Netlogo, created by Uri Wilensky, (along with its variants



Computational Thinking Today 27

such as StarLogo) was among the first computing environments that embodied
a pedagogy aimed at engaging in the disciplinary STEM practice of developing
computational models and simulations, and offered learners tools to think in
terms of computational models and engage in the practices outlined by the tax-
onomy. Curricular interventions such as Project GUTS leveraged these tools
to include modeling and simulation in middle school science and social studies
program.

Denning’s recent writings on CT highlight that the sciences are where CT was
born, and that computational science has been the shining example and the best
argument for CT as a valuable way of bringing CS and computers into non-CS
disciplines (Also See Chapter 1 for a discussion on historical roots of CT). He
channels Aho (2012) to argue that computational modeling — a practice integral
to computational science — be called out as a key part of CT. Although the value
of computational modeling in professional fields from economics to finance to
medicine is beyond question, many in K-12 settings would likely take issue with
Denning’s formulation. It not only ignores the validity of unplugged approaches
to CT, but it also sidesteps a view of CT as a disciplinary thinking skill for deeper
engagement in CS classrooms. In contrast, Sengupta et al. (2020) suggest that
there is value in framing coding as a modeling in STEM classrooms and they rea-
sonably argue that embodied modeling and non-computational materials should
be viewed as representational and cognitive amplifications of computational code.
The following section showcases the plurality of approaches for integrating CT.

Approaches for CT Integration in Other Disciplines

Not surprisingly, science and mathematics classrooms have provided the most
prolific contexts for CT integration. In addition to Project Growing Up Think-
ing Scientifically, or GUTS, (projectguts.com/) and CT-STEM (ct-stem.north-
western.edu/), several new efforts have pursued the goal of integrating CT and
computing in STEM domains for secondary students (though not all draw on
Weintrop et al., 2016). These include Bootstrapworld (www.bootstrapworld.
org/), the STEM Coding project (u.osu.edu/stemcoding/), C2STEM (c2stem.
org), EcoMOD (Jeon et al., 2020), among others. The C2STEM curriculum and
environment uses domain-specific blocks specially designed in Snap! program-
ming, along with guidance from both Grover and Pea (2013) and Weintrop et al.
(2016) to design for and measure synergistic learning of CT and science (Hutchins
et al., 2020a). Other efforts, including Dominguez, Grover and Vahey (2020),
Sengupta, Dickes, and Farris (2020), Lavigne, Orr, and Wolsky, (2018), Benton,
Hoyles, Kalas, and Noss (2016), (2018), Moore, Brophy, Tank, Lopez, Johnston,
Hynes, and Gajdzik (2020), Waterman, Goldsmith, and Pasquale (2020), Yadav,
Larimore, Rich, and Schwarz (2019), have attempted to integrate coding and CT
into science and math in primary and pre-primary school classrooms.


http://projectguts.com
http://ct-stem.north-western.edu
http://ct-stem.north-western.edu
http://www.bootstrapworld.org
http://www.bootstrapworld.org
http://u.osu.edu
http://c2stem.org
http://c2stem.org

28 Shuchi Grover

Not all STEM integration efforts rely on modeling and simulation to guide
integration into STEM learning. Wendell et al. (2020) designed an interdisci-
plinary school curriculum in which students design a search and rescue robot
(using physical computing) that can dig through the rubble. They accomplish
this through exploring animal structure-function relationships using CT prac-
tices like decomposition and abstraction and then combining those findings
with engineering design practices to build robots using Hummingbird con-
trollers. Hadad et al. (2020) also used a physical computing approach to CT
integration in physics. Other examples favor a data-driven approach to STEM
and CT integration (e.g., Krishnamurthi et al., 2020; Wilkerson & Fenwick,
2017). Yet another approach taken by some researchers is to leverage the overlap
between systems thinking and CT, to integrate these thinking skills in STEM
learning (Damelin et al., 2017; Puttick & Tucker-Raymond, 2018).

There are compelling examples of CT integration in non-STEM subjects,
such as social studies, as well. Cannell, Tofel-Grehl, and Searle (2020) describe
how upper elementary students worked with first-hand data sources, engaged
in data analysis and transformations, used visualization tools and physical com-
puting with Circuit Playground Express to explain population shifts & explore
weighty and difficult-to-discuss topics such as the great migration of Blacks
from the American south during the Jim Crow era. Similarly, the Bootstrap:
Data Science curriculum centers data for answering historical questions in ways
students could not otherwise, for example, what caused the fall of the Mayan civiliza-
tion? Or how is the history of food production in the US tied to immigrants’ backgrounds?
Through choosing appropriate narratives and stories, the curriculum helps set
the context for data collection, analysis, and visualization using spreadsheets.

Recently Caplan et al. (2020) suggested moving beyond a mere definition of
what students needed to learn in integration settings (as defined by Weintrop
et al., 2016). Their work extends our understanding of what discipline-based
CT looks like for “competent outsiders” belonging to other disciplines, under-
standing ways in which students make sense of CT in integration settings, and
what a learning progression might look like.

CT integration is often driven by the need to marry data, representations,
and algorithms with concepts from the host domain. Programming these rep-
resentations and algorithms affords engagement with — and sense-making of —
those concepts, however, engaging in designing those data organizations and
data representations can be done outside of coding. Gu et al. (2020) demon-
strate the value of engaging in data organization in helping learners wrestle
with data reasoning aspects of CT. Similarly, Grover (2018) presents an exam-
ple that draws on the computational literary analysis of Shakespeare’s Hamlet
by Stanford professor Franco Moretti, to demonstrate how representations
from social network analysis can be combined with literary analysis through
the use of graphs (closed networks with nodes and edges) for CT integration



Computational Thinking Today 29

in Language Arts. The exercise of converting a story into a network could be at-
tempted computationally, but it is a valuable cognitive exercise that could also be
done manually. Extending Moretti’s example, Grover demonstrates how students
can subsequently transform graphs into mathematical abstractions (adjacency ma-
trices) that can be coded as two-dimensional arrays or data structures in a pro-
gramming environment. Thus, an unplugged activity could be extended through
a plugged one; however, both versions can afford learners novel experiences into
modeling and analyses of literary narratives and the relationships of the characters.

The Special Issue of the Journal of Science Education and Technology Com-
putational Thinking from a Disciplinary Perspective (Lee et al., 2020) as well
as recent symposia on STEM integration with CT (Grover et al., 2020; Grover,
Fisler, Lee, & Yadav, 2020) share many other efforts and exemplary works in
STEM and CT integration.

Toward Coherence to Support CT Integration into
School Subjects

Recently, scholars have attempted to provide more coherence around the vari-
ous definitions and approaches to teaching CT to emerge with frameworks that
can help teachers better understand how to integrate CT in programming and
across other subjects. Here we describe Malyn-Smith et al. (2018)’s articulation
of CT from a disciplinary perspective, Grover (2020)’s CT Integration frame-
work, and PRADA (Dong et al., 2019) — an acronym for Pattern Recognition,
Abstraction, Decomposition, and Algorithms. Additionally, see Chapter 3 in
this volume by Azeka and Yadav on a CT integration model and Chapter 5 by
Tannert, Lorentzen, and Berthelsen on CT in K-12 as an independent subject
vs. integrating it in school subjects.

Malyn-Smith et al. (2018) attempted to examine and articulate what CT
looks like from within a discipline in an effort to move away from the CS-
centric view of CT and better guide integration efforts. They examined the
work of ‘Computational X’ professionals and examined descriptions of curric-
ular units that integrated CT provided by teachers and researchers (as part of a
2-part NSF-funded workshop series). They concluded that individual CT com-
ponents were rarely deployed in discrete capacity in professional work. Instead,
“CT integration practices” came into play that included: understanding complex
systems; innovating with computational representations; designing solutions
that leverage computational power and resources; engaging in collective sense-
making around data; and (making predictions) and understanding potential con-
sequences of actions. In my view, these practices are perhaps the best articulation
of the “why” or benefits of integrating CT and computing into other subjects.

More recently, Grover (2020) further built on Malyn-Smith et al. (2018)
and drew on several CT integration projects to synthesize the interconnected



30 Shuchi Grover

components of integration to articulate CTlIntegration (Grover, 2021a), a
comprehensive framework for integrating computing and CT in disciplinary
learning in school. The framework draws on Shulman (1987)’s seminal ideas
on teacher’s pedagogical content knowledge (PCK) related to a domain and
is inspired by Mishra and Koehler (2006)’s Technological Pedagogical Con-
tent Knowledge (TPCK) framework to integrate technology into school
learning. It provides guidance on how researchers and teachers can attend
to three critical intersections of the host domain or discipline (content,
concepts, and practices), CT (concepts and practices), and pedagogy (see
Figure 2.1). By foregrounding domain PCK, CT PCK (including examina-
tion of appropriate computing tools), and the intersection of discipline and
CT (with guidance on how to identify productive points of intersection), the
framework shows that CT integration can serve many purposes in teaching
various subjects, including the creation of computational artifacts, sense-
making through data and modeling, as well as the critical examination of
phenomena. The framework is intended to support not only curriculum and
assessment design for CT integration, but also research and teacher prepara-
tion efforts. Grover (2021a) also examines and evaluates existing integration
efforts through the lens of the framework, and highlights that the success
of curricula that do a good job of integrating CT depends on how well
the three intersections are designed. Figure 2.1(B) presents a view of the
framework that acknowledges the growing emphasis on, and opportunities
provided by data as the linchpin for integration. Using the framework, Gro-
ver underscores the need to attend to issues of tool choice for integration
including task-specific versus general-purpose languages, issues of cognitive
load, and designing for bridging and transfer, and the importance of framing
in CT integration.

Dong et al. (2019) proposed PRADA “as a practical and understandable
way of introducing the core ideas of CT to non-computing teachers in order
to support them in infusing CT into their curricula”. Their goal was to create
a definition of CT that could be used for integration into existing curric-
ula and generalizable to any discipline and be easily understood by primary
and secondary teachers (the majority of whom have limited CS knowledge).
They used definitions of CT that were popular in literature and practice to
find common ground (Figure 2.2). The PRADA acronym stands for Pattern
Recognition (observing and identifying patterns, trends, and regularities in
data, processes, or problems), Abstraction (identifying the general principles
and properties that are important and relevant to the problem), Decompo-
sition (breaking down data, processes, or problems into meaningful smaller,
manageable parts), and Algorithms developing step by step instructions for
solving [a problem] and similar problems. They argue that data practices and
modeling and simulation are also captured within the elements of the PRADA
framework.



Computational Thinking Today 31

(CT/Coding)
Concepts &
Practices

CTlntegration
P&CK

FIGURE 2.1 (A and B) CTlntegration conceptual framework for aiding design,

evaluation, and research on CT Integration Grover (2021a).
Shuchi Grover.



32 Shuchi Grover

FIGURE 2.2 PR ADA framework derived from extant definitions for CT integration.

Dong et al. (2019).

Open Questions and Need for Further Empirical Inquiry

This section outlines open questions that the education community continues to
wrestle with even as work on CT and its implementation continues to expand.
Despite the enormous progress for CT learning in various forms and various
contexts in K-12 school education, as well as synthesis efforts such as those de-
scribed above that help in instructional design, teaching, and research, there
remain open questions that can and must be answered through empirical inquiry.

Despite the growing popularity of unplugged approaches to teaching CT, we
lack a robust understanding of the affordances of unplugged approaches to CT.
Huang and Looi (2020) also point out that many unplugged activities and CT
assessments are heavily oriented toward a coding view of CT (see Grover, 2017,
Tang et al., 2020). Among many other open questions related to unplugged
engagement with CT, they ask, how do we assess C'T" in unplugged activities without
using code representations? Our work with pre-kindergarten learners forced us to
think in non-coding terms, resulting in a scenario-based assessment (Grover,
Dominguez, Kamdar, Leones, Vahey, & Gracely (2021)). Much work remains
to also be done for the assessment of learning in contexts where CT is taught
through integration in other subjects. Researchers and teachers routinely seek
assessments of CT that are not tethered to a specific coding environment, and
few such exist. For STEM integration projects, it appears that every context
requires its own ways of measuring CT learning because when integration is
done well, CT is tightly intertwined with the domain and appropriate CT tools
(Grover, 2020). This is a space that continues to need more work.

Transfer of learning (or lack thereof) has often been offered (in my view) as
a strawman argument by critics of CT. As explained in Grover and Pea (2018),



Computational Thinking Today 33

the learning sciences advocate that learning designs consciously attend to trans-
fer; transfer needs to be mediated through empirically established techniques that
call for, among other things, making explicit connections between the original
and transfer learning contexts. My own work, although focused narrowly on al-
gorithmic elements and coding, demonstrated transfer from block to text-based
programming. In recent work, Hutchins et al. (2020a) demonstrated that students
used a discrete time-step approach on a novel physics problem after an intervention
involving designing computational simulations in Snap! that involved using the
“delta-t” time-step variable. Hutchins et al. (2020b) demonstrated that another
group of students was able to reason about Netlogo simulations after the same in-
tervention. They also show evidence of improvement in students’ modeling skills
as the intervention progressed through various units, demonstrating the notion of
dosing, and CT skills-building over time. We need more robust studies aimed at
studying the transfer of CT in interventions that are explicitly designed to mediate
for transfer of these problem-solving skills. We need to better understand how to
bridge problem-solving in new contexts with earlier (perhaps unplugged) experi-
ences. We also need to understand how much dosing learners need in order to be
able to apply CT skills to new (near- and far-) transfer contexts.

More work is needed in the context of integration of CT with other sub-
jects emerges as a preferred approach to teaching CT. Although there has been
work done to define learning trajectories of elements of CT (Rich et al., 2017,
2018, 2019), these are theoretical (based on prior literature) and need to be em-
pirically validated, and may not always translate to CT integration settings.
Grover (2018) proposed a theoretical progression of CT integration activities from
simple to complex based on her work in Pre-K through high school integration
projects, but this too needs to be fleshed out further with additional empirical in-
quiry. Teacher preparation, especially in integration settings in secondary grades,
also needs more attention. While there is a growing body of literature on teacher
training for CT integration in elementary school settings much work needs to be
done for integration in secondary grades where integration is more complex and
often includes coding, modeling, and simulations, (Grover, 2018, 2020).

Finally, we need to push on a few directions hitherto explored by only a few.
There is an urgency to understand the role of culture and phenomenology in CS
and CT pedagogy. The importance of appropriate framing of CT integration
in school subjects cannot be overemphasized. It impacts learners’ relationship
with computing as well as subject learning through computing. For example,
Pierson, Brady, and Clark (2020) framed computational models as interactive
participants in a sixth grade STEM classroom and Sengupta et al. (2020) provide
evidence that phenomenological approaches can be useful for framing CT in
K12 STEM classrooms — for example, framing programming as designing math-
ematical measures of change, and framing coding as designing for authentic use.
Such framing, as Sengupta et al. (2020) contend, can also help make CT learning
more meaningful in classrooms with minoritized populations. Barring a few
efforts (e.g., Madkins et al., 2019), the field has not engaged deeply in how cul-
turally relevant pedagogy can be more widely employed in developing CT skills



34 Shuchi Grover

in various contexts. Relevant to this is also the role of learners’ natural language,
and how it can and should be leveraged for authentic engagement with CT as
demonstrated in the trans-languaging work of Vogel et al. (2019).

Ultimately, we also need to continue to examine why we teach CT and CT’s
relationship with the teaching of CS and coding in order to be guided on the what
and how of developing this skill among learners at various ages and stages. Cod-
ing is no doubt a new and valuable skill for K-12 classrooms. It is worth bearing
in mind that we teach computing to develop informed citizens in a fast-changing
and increasingly pernicious world driven by computing where biases are being
replicated in algorithms, and the loss of privacy or reputation may be but a few
clicks away. We need to teach computational thinking and problem-solving in
ways that transcend programming language (which may not be used in profes-
sional settings today, or may be obsolete tomorrow if in use today) and can sur-
vive the impending onslaught of artificial intelligence systems with the capability
to generate much of the code written by humans today. What learners must take
forward are habits of mind, analytical thinking and problem-solving strategies,
and sensibilities of design and data gleaned in CS and non-CS classrooms.

Closing Remarks

As this chapter has described, CT 1is a thinking skill that can be used for problem
solving in various domains, for the creation of artifacts and creative expression — for
oneself or one’s broader communities, and for sense-making (increasingly with data)
in various contexts. As such, it has a place in all school subjects (including CS). It can
be learned in both CS and non-CS classrooms, and it bears the potential to enrich
learning in all settings. Teaching CT ensures deeper learning of CS disciplinary
practices and skills (programming among others) in CS classrooms and leveraging
CS problem-solving approaches (representations, programming, and computational
modeling perhaps being the most valuable) in non-CS settings. Ideally, learners
should experience CT often and in diverse settings, and in increasingly sophisti-
cated ways, over the course of their K-12 journey. In the spirit of pedagogical plural-
ity and epistemological pluralism, experiencing and applying CT in different ways
(in coding contexts, unplugged activities, as well as games and digital interactives),
and for different purposes (for sense-making, innovation, and problem-solving, for
creative expression, and for social participation and social justice through comput-
ing) — helps diverse learners at different ages and stages engage meaningfully with
CT. As with any competency, skills are built over time. Problem-solving skills too
are honed through multiple applications, in multiple forms, and multiple contexts.
And so it is with CT. The idea of dosing in educational interventions suggests that
the more learners engage in CT in various settings, the deeper they understand
abstraction and representation, and algorithms (through coding and non-coding
activities). There remain questions about teaching and learning CT that must be
answered through robust empirical inquiry. Judging by the revelations in section
“Introduction: From Academia to Mainstream”, however, the idea of CT is thriv-
ing and growing in acceptance. CT is, indeed, here to stay.



Computational Thinking Today 35

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,
55(7), 832-835.

Araujo, R. C., Floyd, L., & Gadanidis, G. (2019). Teacher candidates’ key understand-
ings about computational thinking in mathematics and science education. Journal of
Computers in Mathematics and Science Teaching, 38(3), 205-2209.

Armoni, M. (2013). On teaching abstraction in computer science to novices. Journal of
Computers in Mathematics and Science Teaching, 32(3), 265-284.

Bagge, P., & Grover, S. (2020). Before You Program, Plan! In Shuchi Grover (Ed.),
Computer science in K-12: An A-to-Z handbook on teaching programming
(pp- 99—112). Ed”nity, Palo Alto, CA.

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work?. In
Dennis Komm, and Walter Unger (Eds.), Adventures between lower bounds and higher
altitudes (pp. 497-521). Springer, Cham, Switzerland.

Bell, T., Witten, I.LH., Fellows, M., McKenzie, J., & Adams, R. (2002). Computer
Science Unplugged: An Enrichment and Extension Programme for Primary-Aged
Children. Retrieved from http://csunplugged.org

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2016, February). Building mathematical
knowledge with programming: Insights from the ScratchMaths project. Suksapattana Foun-
dation, Bangkok, Thailand.

Bers, M. U, Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., et al. (2016).
Developing computational thinking in compulsory education-implications for policy and
practice. Join Research Center (European Commission), Seville. Retrieved from
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_
computhinkreport.pdf.

Boyer, K., Buffum, P. S., Culbertson, K., Frankosky, M., Lester, J., Martinez-Arocho,
A., ... Wiebe, E. (2015, February). ENGAGE: A game-based learning environment
for middle school computational thinking. In Proceedings of the 46th ACM technical
symposium on computer science education (pp. 440—440). ACM, New York.

Cannell, C., Tofel-Grehl, C., & Searle, K. (2020). Using circuit playground express
and maps to visualize population migration data. In Proceedings of the 14th in-
ternational conference of the learning sciences (ICLS) 2020, Nashville, Tennessee.

Caplan,B., Covitt, B.,Love, G., Berkowitz, A.R.., Gunckel, K.L.,McClure, C., & Moore,
J. C. (2021). Using computational thinking and modeling to build water and water-
shed literacy. Connected Science Learning, 3(2). Retrieved from https://www.nsta.
org/connected-science-learning/connected-science-learning-march-april-2021/
using-computational-thinking.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard,
J. (2015). Computational thinking — A guide for teachers. Computing at School
Community, 2015, 1-18. Retrieved from https://community.computingatschool.
org.uk/ resources/2324.

Curzon, P, Bell, T., Waite, J., & Dorling, M. (2020). Computational thinking. In Sally
A. Fincher and Anthony Robbins (Eds.), Cambridge handbook of computer science educa-
tion research. Cambridge University Press, Cambridge, UK.

Curzon, P., & Grover, S. (2020). Guided exploration and unplugged activities. In Shu-
chi Grover (Ed.), Computer science in K-12: An A-to-Z handbook on teaching program-
ming (pp. 63—74). Edfinity, Palo Alto, CA.


http://csunplugged.org
http://publications.jrc.ec.europa.eu
http://publications.jrc.ec.europa.eu
https://www.nsta.org
https://www.nsta.org
https://www.nsta.org
https://community.computingatschool.org.uk
https://community.computingatschool.org.uk

36 Shuchi Grover

Curzon, P., & McOwan, P. W. (2017). The power of computational thinking: Games, magic
and puzzles to help you become a computational thinker. World Scientific, Hackensack, NJ.

Damelin, D., Krajcik, J. S., Mcintyre, C., & Bielik, T. (2017). Students making systems
models. Science Scope, 40(5), 78—83.

Denning, P. J. (2000). Computer science: The discipline. Encyclopedia of Computer Sci-
ence, 32(1), 9-23.

DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. MIT Press, Cam-
bridge, MA.

Dominguez, X., Grover, S., Kamdar, D., Leones, T., & Vahey, P (2021). Preschool
problem solvers: Developing assessment tasks to measure young children’s learning
of computational thinking skills and practices. Computer Science Education.

Dominguez, X., Grover, S., & Vahey, P. (2020). Enriching mathematics and science
with computational thinking: Co-designing preschool activities with educators and
parents. In Session ‘integrating STEM & computing in PK-12: Operationalizing
computational thinking for STEM learning & assessment. In Proceedings of the 14th
international conference of the learning sciences. ISLS, Nashville, TN.

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., ... & Andrews, A.
(2019, February). PRADA: A practical model for integrating computational think-
ing in K-12 education. In Proceedings of the 50th ACM technical symposium on computer
science education (pp. 906—912), Portland, OR..

Fields, D. A., Kafai, Y. B., Morales-Navarro, L., & Walker, J. T. (2021). Debugging by de-
sign: A constructionist approach to high school students’ crafting and coding of electronic
textiles as failure artefacts. British Journal of Educational Technology, 52: 1078—1092.

Futschek, G., & Moschitz, J. (2011, October). Learning algorithmic thinking with tan-
gible objects eases transition to computer programming. In International conference
on informatics in schools: Situation, evolution, and perspectives (pp. 155-164). Springer,
Berlin, Heidelberg.

Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I. (2017). Computational think-
ing in mathematics teacher education. Contemporary Issues in Technology and Teacher
Education, 17(4), 458—477.

Grover, S. (2013). Learning to code isn’t enough. EdSurge. Retrieved from https://www.
edsurge.com/news/2013-05-28-opinion-learning-to-code-isn-t-enough.

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a
middle school classroom. In Peter J. Rich and Charles B. Hodges (Eds.), Emerging research,
practice, and policy on computational thinking (pp. 269—288). Springer, Cham, Switzerland.

Grover, S. (2018a). Computational modeling: How can we manage cognitive load when stu-
dents must simultaneously learn to code and code to learn in a STEM classroom? Retrieved
from https://www.shuchigrover.com/what-is-computational-modeling-and-how-
can-we-manage-cognitive-load-when-students-must-learn-to-code-and-code-to-
learn-simultaneously/.

Grover, S. (2018b). Helping students see Hamlet and Harry Potter in a new light
with computational thinking. edSurge. Retrieved from https://www.edsurge.com/
news/2019-12-19-how-an-unplugged-approach-to-computational-thinking-can-
move-schools-to-computer-science.

Grover, S. (2021a). ‘CTIntegration” A conceptual framework guiding design and anal-
ysis of integration of computing and computational thinking into school subjects.
EdArXiv. Retrieved from https://doi.org/10.35542/0sf.io/eg8n5

Grover, S. (2021b). Teaching and Assessing for Transfer from block-to-text program-
ming in middle school computer science. In Charles Hohensee and Joanne Lobato
(Eds.), Transfer of learning: Progressive perspectives for mathematics education and related fields
(p. 251). Springer, Cham, Switzerland.


https://www.edsurge.com
https://www.edsurge.com
https://www.shuchigrover.com
https://www.shuchigrover.com
https://www.shuchigrover.com
https://www.edsurge.com
https://www.edsurge.com
https://www.edsurge.com
https://doi.org/10.35542/osf.io/eg8n5

Computational Thinking Today 37

Grover, S., Dominguez, X., Kamdar, D., Vahey, P., Moorthy, S., Rafanan, K., & Gracely,
S. (2019, February). Integrating computational thinking in informal and formal sci-
ence and math activities for preschool learners. In Proceedings of the 50th ACM technical
symposium on computer science education (pp. 1257-1258). ACM, New York.

Grover, S., Dominguez, X., Kamdar, D., Leones, T., Vahey, P., & Gracely, S. (2021,
manuscript under revision). Strengthening Early STEM Learning by Integrating
CT into Science and Math Activities at Home. In ACM Special Publication on K-5
Computational Thinking. ACM. New York.

Grover, S., et al. (2020). Integrating STEM & computing in PK-12: Operationalizing
computational thinking for STEM learning & assessment. In Proceedings of the 14th
international conference of the learning sciences. ISLS, Nashville, TN. Presentation slide-
deck. Retrieved from https://bit.ly/STEMC-Integration.

Grover, S., Fisler, K., Lee, I., & Yadav, A. (2020). Integrating Computing and Compu-
tational Thinking into K-12 STEM Learning. In Proceedings of the 51st ACM technical
symposium on computer science education (pp. 481-482). ACM, New York

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: non-programming
interactives to advance learning of introductory programming concepts in middle
school. Computer Science Education, 29(2-3), 106—135.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of
the field. Educational Researcher, 42(1), 38—43.

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come.
Computer Science Education: Perspectives on Teaching and Learning in School, 19, 1257-1258.

Grover, S., Pea, R. D., & Cooper, S. (2014). Expansive framing and preparation for fu-
ture learning in middle-school computer science. International Society of the Learning
Sciences, Boulder, CO.

Gu, X., Heller, M. A., L1, S., Ren, Y., Fisler, K., & Krishnamurthi, S. (2020, August). Using
Design Alternatives to Learn About Data Organizations. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (pp. 248-258). ACM, New York.

Hadad, R., Thomas, K., Kachovska, M., & Yin, Y. (2020). Practicing formative assess-
ment for computational thinking in making environments. Journal of Science Educa-
tion and Technology, 29(1), 162—173.

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch? A controlled ex-
periment comparing plugged first and unplugged first programming lessons. In
Proceedings of the 12th workshop on primary and secondary computing education (pp. 49-56).
ACM, New York.

Hoyles, C. (2020). Programming and mathematics: Insights from research in England. Com-
puting education research seminars, Raspberry Pi Foundation. UK. Retrieved from
https://www.raspberrypi.org/computing-education-research-online-seminars/previous-
seminars/#programming-and-mathematics-insights-from-research-in-england.

Huang, W., & Looi, C. K. (2020). A critical review of literature on “unplugged” ped-
agogies in K-12 computer science and computational thinking education. Computer
Science Education, 31(1), 83-111.

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim,
J., ... & Jasute, E. (2015). A global snapshot of computer science education in K-12
schools. In Proceedings of the 2015 ITiCSE on working group reports (pp. 65—83).

Hutchins, N. M., Biswas, G., Maréti, M., Lédeczi, A., Grover, S., Wolf, R, ... McEl-
haney, K. (2020a). C2STEM: A system for synergistic learning of physics and com-
putational thinking. Journal of Science Education and Technology, 29(1), 83—100.

Hutchins, N. M., Biswas, G., Wolf, R., Chin, D., Grover, S., & Blair, K. (2020b).
Computational thinking in support of learning and transfer. In Proceedings of the
international conference of the learning sciences (ICLS), Nashville, TN,


https://bit.ly
https://www.raspberrypi.org
https://www.raspberrypi.org

38 Shuchi Grover

Jackiw, N. (2004). The geometer’s sketchpad. Retrieved 15 June 2005 from http://
www.keypress.com/sketchpad/modules.html

Jeon, S., Metcalf, S., Dickes, A., & Dede, C. (2020, April). Elementary teacher perspec-
tives on a blended computational modeling and ecosystem science curriculum. In
Society for information technology & teacher education international conference (pp. 46—=55).
Association for the Advancement of Computing in Education (AACE).

K12¢s.org. 2018. Computational thinking. Retrieved from https://k12cs.org/
computational-thinking/.

Kafai, Y. B. (2016). From computational thinking to computational participation in
K-12 education. Communications of the ACM, 59(8), 26-27.

Kamdar, D., Dominguez, X., Grover, S., Vahey, P., Rafanan, K., Gracely, S., & Leones,
T. (2020). Researchers, teachers and families co-design resources linking compu-
tational thinking with math and science in preschool. In Proceedings of the annual
meeting of the AER A, San Francisco, CA.

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J., & McGinnis, J. R. (2020).
Teacher change following a professional development experience in integrating
computational thinking into elementary science. Journal of Science Education and Tech-
nology, 29(1), 174—188.

Knuth, D. E. (1981). Algorithms in modern mathematics and computer science (pp. 82—99).
Springer, Berlin, Heidelberg.

Knuth, D. E., & Pardo, L. T. (1980). The early development of programming languages.
In N. Metropolis, J. Howlett, and Gian-Carlo Rota (Eds.), A history of computing in
the twentieth century (pp. 197-273). Academic Press, New York.

Ko, A. J., Oleson, A., Ryan, N., Register, Y., Xie, B., Tari, M., ... Loksa, D. (2020). It is
time for more critical CS education. Communications of the ACM, 63(11), 31-33.

Krishnamurthi, S., Schanzer, E., Politz, J. G., Lerner, B. S., Fisler, K., & Dooman, S.
(2020). Data science as a route to Al for middle-and high-school students. arXiv
preprint arXiv:2005.01794.

Lavigne, H., Orr, J., & Wolsky, M. (2018, March). Exploring computational think-
ing in preschool math learning environments. In Society for information technology &
teacher education international conference (pp. 38—43). Association for the Advancement
of Computing in Education (AACE).

Lee, L., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational
thinking from a disciplinary perspective: Integrating computational thinking in
K-12 science, technology, engineering, and mathematics education. Journal of Science
Education and Technology, 29(1), 1-8.

Li, Y., Schoenfeld, A. H., Graesser, A. C., Benson, L. C., English, L. D., & Duschl,
R. A. (2020). On computational thinking and STEM Education. Journal for STEM
Education Research, 3, 147-166.

Madkins, T. C., Martin, A., Ryoo, J., Scott, K. A., Goode, J., Scott, A., & McAlear, F.
(2019, February). Culturally relevant computer science pedagogy: From theory to
practice. In 2019 research on equity and sustained participation in engineering, computing,
and technology (RESPECT) (pp. 1-4). IEEE, Piscataway, NJ.

Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018).
Developing a framework for computational thinking from a disciplinary perspec-
tive. In Proceedings of the international conference on computational thinking education (p. 5).
The Education University of Hong Kong, Hong Kong.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge:
A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.


http://www.keypress.com
http://www.keypress.com
http://K12cs.org
https://k12cs.org
https://k12cs.org

Computational Thinking Today 39

Moore, T.]J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., &
Gajdzik, E. (2020). Multiple representations in computational thinking tasks: A clinical
study of second-grade students. Journal of Science Education and Technology, 29(1), 19-34.

National Research Council (NRC). (2010). Report of a workshop on the scope and nature of
computational thinking. National Academies Press, Washington, DC.

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental pro-
gramming concepts and computational thinking with Scratch]Jr in preschool education:
A case study. International Journal of Mobile Learning and Organisation, 10(3), 187-202.

Papert, S. A. (1972). Teaching children to be mathematicians versus teaching about
mathematics. International Journal of Mathematical Education in Science and Technology,
3(3), 249-262.

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,
New York.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.

Phil Vahey Emmott, S., & Rison, S. (2005). Towards 2020 science, Microsoft re-
search. Retrieved from https://www.scienceinparliament.org.uk/wp-content/
uploads/2013/09/sip65-4-17.pdf.

Pierson, A. E., Brady, C. E., & Clark, D. B. (2020). Balancing the environment: Com-
putational models as interactive participants in a STEM classroom. Journal of Science
Education and Technology, 29(1), 101-119.

Puttick, G., & Tucker-Raymond, E. (2018). Building systems from scratch: An ex-
ploratory study of students learning about climate change. Journal of Science Educa-
tion and Technology, 27(4), 306-321.

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018). Decomposition:
A k-8 computational thinking learning trajectory. In Proceedings of the 2018 ACM
conference on international computing education research (pp. 124-132). ACM, New York.

Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A k-8 debugging
learning trajectory derived from research literature. In Proceedings of the 50th ACM
technical symposium on computer science education (pp. 745—751). ACM, New York.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017,
August). K-8 learning trajectories derived from research literature: Sequence, repe-
tition, conditionals. In Proceedings of the 2017 ACM conference on international computing
education research (pp. 182-190). ACM, New York.

Rowe, E., Asbell-Clarke, J., Cunningham, K., & Gasca, S. (2017, October). Assessing
implicit computational thinking in zoombinis gameplay: Pizza pass, fleens & bub-
blewonder abyss. In Extended abstracts publication of the annual symposium on computer-
human interaction in play (pp. 195-200). ACM, New York.

Salac, J., & Franklin, D. (2020, June). If they build it, will they understand it? Exploring the
relationship between student code and performance. In Proceedings of the 2020 ACM con-
ference on innovation and technology in computer science education (pp. 473—479), Portland, OR.

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computa-
tional thinking in STEM education. In Computational thinking in the STEM disciplines
(pp- 49-72). Springer, Cham, Switzerland.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57(1), 1-23.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142—158.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational think-
ing: A systematic review of empirical studies. Computers & Education, 148, 103798.


https://www.scienceinparliament.org.uk
https://www.scienceinparliament.org.uk

40 Shuchi Grover

Taylor, S., Min, W., Mott, B., Emerson, A., Smith, A., Wiebe, E., & Lester, J. (2019).
IntelliBlox: A toolkit for integrating block-based programming into game-based
learning environments. In 2019 IEEE blocks and beyond workshop (B&B) (pp. 55-58).
IEEE Computer Society, Piscataway, NJ.

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to
computational action. Communications of the ACM, 62(3), 34-36.

Touretzky, D., Gardner-McCune, C., Martin, F., & Sechorn, D. (2019, July). Envision-
ing Al for K-12: What should every child know about AI?. In Proceedings of the AAAI
conference on artificial intelligence (Vol. 33, pp. 9795-9799). AAAI Press, Palo Alto, CA.

Vogel, S., Hoadley, C., Ascenzi-Moreno, L., & Menken, K. (2019, February). The role
of translanguaging in computational literacies: Documenting middle school bilin-
guals’ practices in computer science integrated units. In Proceedings of the 50th ACM
technical symposium on computer science education (pp. 1164-1170). ACM, New York.

Waite, J. L., Curzon, P., Marsh, W., Sentance, S., & Hadwen-Bennett, A. (2018). Ab-
straction in action: K-5 teachers’ uses of levels of abstraction, particularly the design
level, in teaching programming. International Journal of Computer Science Education in
Schools, 2(1), 14—40.

Washington, A. N. (2020). When twice as good isn’t enough: The case for cultural
competence in computing. In Proceedings of the 51st ACM technical symposium on com-
puter science education (pp. 213-219). ACM, New York.

Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). Integrating computational
thinking into elementary science curriculum: An examination of activities that sup-
port students’ computational thinking in the service of disciplinary learning. Journal
of Science Education and Technology, 29(1), 53—64.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilen-
sky, U. (2016). Defining computational thinking for mathematics and science class-
rooms. Journal of Science Education and Technology, 25(1), 127—147.

Weintrop, D., & Grover, S. (2020). JavaScript, python, scratch, or something else? Nav-
igating the bustling world of introductory programming languages. In Shuchi Gro-
ver (Ed.), Computer science in K-12: An A-to-Z handbook on teaching programming (pp.
99-112). Edfinity, Palo Alto, CA.

Wendell, K., Shaw, F., Kshirsagar, K., Danahy, E., Bernstein, D., Puttick, G., & Cas-
sidy, M. (2020). Navigating Dual Goals of Team Collaboration and Design Concept
Development in a Middle School Bio-Inspired Robotics Unit. In Gresalfi, M. and
Horn, I. S. (Eds.), The Interdisciplinarity of the Learning Sciences, 14th Interna-
tional Conference of the Learning Sciences (ICLS) 2020, Volume 2 (pp. 895-896).
Nashville, Tennessee: International Society of the Learning Sciences.

Wilkerson, M. H. & Fenwick, M. (2017). The practice of using mathematics and com-
putational thinking. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.), Helping
Students Make Sense of the World Using Next Generation Science and Engineering
Practices. Arlington, VA: National Science Teachers’ Association Press. pp. 181-204.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in
teacher education. In Peter Rich and Charles Hodges (Eds.), Emerging research, prac-
tice, and policy on computational thinking (pp. 205-220). Springer, Cham, Switzerland.

Yadav, A., Larimore, R, Rich, K., & Schwarz, C. (2019, March). Integrating computa-
tional thinking in elementary classrooms: Introducing a toolkit to support teachers. In
Society for information technology & teacher education international conference (pp. 347-350).
Association for the Advancement of Computing in Education (AACE).



