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COMPUTATIONAL THINKING TODAY

Shuchi Grover

Introduction: From Academia to Mainstream

Daily news reflects the spirit of a time. Words and phrases appearing in main-
stream media are an indicator of the prevailing ideas of an age. Google News, 
which indexes daily mainstream news articles from all over the world could 
therefore be considered a reliable indicator of the zeitgeist – in a way that nei-
ther Google Search nor Google Scholar is. The appearance of the phrase “com-
putational thinking” in Google News articles in the January to August period 
of 2020 has grown by more than a factor of 10 from the same time window in 
2013 – from the meager 35 or so articles (spread over 3 pages of Google News 
results) in 2013 to about 260 over 26 pages of results in 2020. The only logical 
conclusion is that the idea of computational thinking, or CT, is increasingly 
becoming a part of mainstream consciousness.

The choice of 2013 as a comparison to today is only somewhat arbitrary. 
By 2013, there was a healthy awareness of CT in the computer science (CS) 
education research world with about 100 pages of results on Google Scholar 
displaying roughly 1,000 articles (compared to the 35 articles in mainstream 
publishing and news sites). It was in 2013 that Code.org was launched, and with 
it came a significant fillip to computing education at the national policy level in 
the US as well as globally. It was the year Simon Peyton-Jones’ keynote at SIG-
PLAN talked about Computer Science as a School Subject. And of course, it was 
also the year that Grover and Pea’s (2013) “state of the field” paper on CT ap-
peared in the January issue of Educational Researcher, the prestigious flagship 
journal of the American Educational Research Association – it was one of the 
first papers to interpret Wing (2006)’s definition of CT and describe it to the 
broader educational research community as a composite skill with component 
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elements largely drawn from CS. It was also the year an EdSurge article, Learn-
ing to Code Is Not Enough (Grover, 2013), made the compelling argument that 
while programming was indeed a necessary skill for the new age, CS learning 
focused on a coding language is not enough unless we also consciously focus on 
teaching broader CS ideas and deeper CT skills.

The story of CT’s growth in mainstream consciousness is not just one 
of numbers though. Not only has the number of news stories (on Goo-
gle News) grown more than 11-fold in these last seven years, the diver-
sity of news stories bears testament to the spread of CT in many more 
realms of human experience. Where once the provenance of CT stories 
was largely school education (or K-12 schooling, as we call it here in the 
United States), today the sources of new stories include industry (especially 
how companies are funding the development of CT skills through partner-
ships with academic entities), current events (such as the UK’s A-level and 
GCSE exam-grade debacle in the midst of the Covid-19 pandemic), best-
selling business book titles (such as John Maeda’s “How to Speak Machine: 
Computational Thinking for the Rest of Usw”), and drama (in the form of 
“Algorithmic Theater”), even as stories from primary and secondary school 
education still abound. Perhaps the most telling news stories of CT’s con-
sistent spread in 2020 are ones from higher education. Institutions around 
the world are creating new courses that call out CT as a key ingredient 
and teach applications of computing and computational techniques (such 
as MIT’s Introduction to Computational thinking, Northwestern University’s 
MBAi program, and Purdue’s new agriculture informatics course) or using 
CT in research in novel spaces (for example, the use of CT in gerrymander-
ing research at Boston University), or viewing CT as a key means to inspire 
women in Science, Technology, Mathematics and Engineering (STEM) (as 
described by the first female director of MIT CSAIL, Daniella Rus).

A few things are amply evident in these news stories. CT has currency 
today well beyond K-12 school education where it enjoys healthy support and 
has, in fact, helped steer the adoption of computing and programming in pri-
mary and secondary classrooms (Curzon et al., 2020). As these news stories 
attest, both in academic and non-academic settings, people describe CT as a 
vehicle for engaging with computing and participating in 21st-century careers 
and culture. CT is seen as a 21st-century literacy, and as a 21st-century skill 
alongside critical thinking, creativity, collaboration, and communication (as 
described by Grover, 2018). CT is listed among skill sets that separately call 
out programming and digital literacy suggesting there is a distinction drawn 
between other digital skills and CT. CT is seen to be synonymous with com-
putational problem-solving, but it is also seen as a means to computational cre-
ation and participation (Kafai, 2016) and computational action (Tissenbaum, 
Sheldon, & Abelson, 2019). Some have argued that the explosion of interest 
in CT is because it is seen as a problem-solving skillset for everyone, not just  
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programmers or even computer scientists to possess (Curzon et al., 2020). As 
we design for pedagogies for teaching computing and CT, we must heed the 
fast-changing computing context – the increasingly pernicious possibilities of 
biases in algorithms, for example – and use CT as a vehicle for “critical com-
puting” (Ko et al., 2020; Washington, 2020). There is also a need to teach comput-
ing with a focus on CT so that the skills developed are conceptual and creative, and can 
survive the impending onslaught of artificial intelligence and obsolescence of skills such as 
vanilla programming.

This chapter traces a brief history of CT in its various flavors and avatars 
from the early days of computing to the present day. It describes what CT has 
come to mean today, addresses key approaches to engaging learners in CT ex-
periences, and discusses the vast space of CT integration into various learning 
contexts and domains including attempts to bring coherence to the discourse 
of CT integration. It ends with a reflection on open questions and areas for 
further inquiry.

From Knuth to Wing: Computational Thinking as Problem-
Solving and Disciplinary Thinking from/of CS

For many in education, Jeannette Wing’s 2006 article provided the impe-
tus to attend to CT or “thinking like a computer scientist”, as an essential 
 problem-solving skill for the new generation of learners. Wing’s article reso-
nated with the broader scientific community also because it came on the heels 
of enormous activity in the field of science in the early 2000s, where the use of 
computational modeling tools and algorithms for working with large datasets 
was tangibly transforming the very fabric of science – a new reality that was 
compellingly described in the influential “Towards 2020 Science” report (Em-
mott & Rison, 2005).

Although Wing was the first to make a compelling case for CT as a univer-
sal, foundational skill in this age of ubiquitous computing, the idea of “com-
puter science thinking” has been written about sporadically since the 1960s. 
 Problem-solving practices of CS were discussed as early as 1968 (by G.E. 
Forsythe). Among the earliest articles to articulate elements of CS thinking was 
Donald Knuth’s Algorithms in Modern Mathematics and Computer Science 
(Knuth, 1981), in which he wrestled with the question, “Do most mathemati-
cians have an essentially different thinking process from that of most computer 
scientists?” Interestingly, he referred to the thinking processes of computer sci-
entists as “computer science thinking”. Knuth listed key elements of math-
ematical thinking (MT), and compared and contrasted them with elements 
of computer science thinking (CST). CST overlapped with MT in the areas 
of formula manipulation, representation of reality, reduction to simpler prob-
lems, abstract reasoning, information structures, and algorithms (with formula 
manipulation exhibiting only mild connection with CST). He also noted that 
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generalization and formula manipulation involve the general idea of pattern 
recognition. He observed that, unlike MT, CST does not deal with infinity, 
and conversely some kinds of CST are not part of MT, namely, (1) dealing with 
complexity (since MT does not care about efficiency, economy, or cost of op-
erations) and (2) the dynamic notion of “state” of a process. The thorny issue 
of variable “assignment” and its distinction with mathematical equality was the 
subject of another Knuth piece – “As we have remarked, mathematicians had 
never used such an operator before; in fact, the systematic use of assignments 
constitutes a distinct break between computer-science thinking and mathemat-
ical thinking” (Knuth & Pardo, 1980).

A second noteworthy article, in my view, that defines and explains the idea 
of CS-related skills and practices as separate from knowledge components is Den-
ning’s (2000) – Computer Science: The Discipline. In addition to discussing key 
content topics that comprise computing, Peter Denning outlined “Standard Con-
cerns of the Field” and stated that “every practitioner of the discipline must be 
skilled in four basic areas: algorithmic thinking, representation, programming, 
and design”. It is useful to note that Denning described programming as taking 
“algorithmic thinking and representations and embody them in software that 
will cause a machine to perform in a prescribed way. This skill includes working 
knowledge of different programming languages (each having its own strengths 
and limitations), program development tools (which aid testing, debugging, 
modularity, and compatibility)” and design as including “many practical consid-
erations such as engineering tradeoffs, integrating available components, meeting 
time and cost constraints, and meeting safety and reliability requirements”.

There is substantial overlap between Denning’s areas of CS “practice” (as 
well as Knuth’s elements of CST) and the articulation of CT by K-12 CS edu-
cators and researchers following Wing (2006), including (among others), Gro-
ver and Pea (2013), the Computing At School group in the UK ( Csizmadia 
et al., 2015), the K-12 National CS Framework in the US (k12cs.org), and Boc-
coni et al. (2016). They converge on CT as comprising algorithmic thinking, 
representation (and abstraction), generalization and pattern recogni-
tion, decomposition, creating programs, debugging and systematic 
error processing, and evaluation. There are minor distinctions in that de-
bugging, modularity, and evaluation are sometimes called out separately today 
as opposed to being encapsulated in other practices related to programming 
and design. However, the idea of a set of CS-inspired problem-solving skills of 
which programming is but one (in addition to algorithmic thinking, represen-
tation, and design), is common to all these formulations. Lastly, even though 
Wing (2006) made it amply clear, the National Academies Workshops on CT 
(NRC, 2010) helped underscore the view that CT is more than programming. 
The separation of programming from algorithmic thinking, representation, 
and design by Denning (2000) serves to provide an answer to the oft-asked 
question, “Is CT any different from programming?”

http://k12cs.org
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CT in CS through Learning Coding

One of the goals of CS learning experiences especially when teaching pro-
gramming should be to engage in CT, and help learners recognize and 
use CT skills to aid the problem-solving process. Many CS curricula un-
derscore the need to teach CT as part of programming which is by far the 
most popular vehicle to develop CT skills. If taught well, programming helps 
learners engage in the elements of CT. However, recent research in block-
based programming environments has shown that learners can create pro-
grams without a robust understanding of programming concepts (Grover, 
Jackiw, & Lundh, 2019; Salac & Franklin 2020) or purposefully engaging 
in CT. Grover, Pea, and Cooper (2014) argue that an overemphasis on pro-
gramming environments and syntax can result in shallow programming ex-
periences without deeper engagement in CT practices; infusing CT in CS  
and learning of programming requires thought and deliberate design to ensure 
that learners engage in ways that develop computational habits of mind. For 
example, activities and learning experiences can be designed such that learners 

Approaches to Engaging Learners in CT

Today CT is recognized as a set of skills and problem-solving strategies that 
have their roots in CS, as well as mathematics, design, and engineering (Shute 
et al., 2017). CT has, in fact, been instrumental in the adoption of teaching 
CS and programming in K-12 education in many countries around the globe 
that have called out CT as a key part of learning computing and programming 
(Bocconi et al., 2016; Hubwieser et al., 2015), with India most recently declar-
ing it as part of their 2020 National Education Plan. CT pedagogy within and 
across nations usually includes both coding as well as non-coding activities. CT 
is also taught and applied in the context of learning other subjects (discussed in 
section “Integrating CT in Non-CS Classrooms”), an approach that is seen by 
many as promising and productive to ensure more sustained engagement with 
CT. See Chapter 3 in this volume for a discussion on the progression of CT 
learning experiences.

It is important to remember that much like problem solving, CT is a skill or 
competency that develops over time (as with all skills) and one-off experi-
ences are insufficient. Also, CT does not really have a “content” component 
that needs to be taught. Skills are developed in context, through educa-
tional experiences that require learners to recognize a need for them and 
employ them as appropriate. As such, CT can be developed in several learn-
ing contexts, in both CS and non-CS classrooms. It can be taught through 
various pedagogical approaches.
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are required to consciously engage in algorithmic thinking through planning 
code before programming – an exercise that also helps learners appreciate the 
layers of abstraction in the context of programming (Armoni, 2013; Bagge & 
Grover, 2020; Waite et al., 2018), recognize and appreciate elements of algo-
rithms (sequence, repetition, and selection), problem decomposition, debug-
ging, and pattern recognition across problems. When the curriculum ensures 
well-designed engagement with CT, learners understand programming con-
cepts more deeply, are better able to design and create better artifacts and are 
able to demonstrate transfer to new programming and problem-solving con-
texts (Grover, 2021b; Pea, 2015; Hutchins et al., 2020a, 2020b).

Sometimes curriculum designers choose to foreground specific CT practices. 
For example, Fields and Kafai (2020) center debugging in the learning of CT 
and programming. Futschek and Moschitz (2011) focus on building algorithmic 
thinking with unplugged activities with cards before they move to Scratch. 
Waite and colleagues focus on teaching abstraction through conscious engage-
ment with design and planning in programming (Waite et al., 2018). Dominguez 
and colleagues focus on algorithmic thinking, abstraction, and decomposition 
as entry points for CT in preschoolers’ activities (Grover, Dominguez, Kamdar, 
Vahey, Moorthy, Rafanan & Gracely, 2019; Grover, Dominguez, Kamdar, Le-
ones, Vahey, & Gracely, 2021). Recent research has also proposed a data-centric 
approach to developing CT skills (Grover, 2020; Gu, Heller, Li, Ren, Fisler, 
& Krishnamurthi, 2020) and in introductory computing more broadly. It is 
worth noting that while data abstraction, data organization, and data repre-
sentation are indeed called out as essential aspects of CT ( Grover & Pea, 2013; 
ISTE/CSTA, 2011), common CT practice in classrooms has thus far tended to 
focus on algorithmic thinking. This proclivity for data-centric approaches to 
CT however may see a change with the growing attention to data practices and 
data science that are now also seen as entry points for AI in K-12 classrooms 
(Touretzky et al., 2019).

Engaging in CT through Unplugged and Non-Programming 
Activities

There are approaches besides programming that can help learners build CT and 
apply CT skills. Unplugged or non-programming activities – that do not use any 
computing devices – are popular, especially with younger learners who may not 
be familiar with coding. CS Unplugged (Bell et al., 2002; Bell & Vahrenhold, 
2018) has been a popular curriculum to teach CS concepts through engaging, 
offline activities. CS Unplugged activities also clarify for teachers what CT skills 
are embedded in each of their activities. Although some efforts have introduced 
children as young as six to programming through software environments like 
Scratch Jr and Kodable, and tangible computing tools (e.g., Bers et al., 2014; 
Papadakis, Kalogiannakis, & Zaranis, 2016; Weintrop & Grover, 2020), many 
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believe that it is easier to engage younger learners as well as non-specialist pri-
mary grades teachers in ideas of problem decomposition, pattern recognition, 
and algorithmic thinking through unplugged activities (Huang & Looi, 2020). 
Curzon and McOwan (2017) believe there is a great deal to be gained by look-
ing for a simplified CT progression for younger learners that builds on everyday 
ideas that are easily relatable, for example, stories, puzzles, magic tricks, board 
games, and even song and dance. However, the idea of algorithmic precision 
is one that needs to be reinforced in unplugged settings; this can be demon-
strated by having different students executing the same algorithm and examin-
ing whether the same outcome is achieved every time. There is value in picking 
examples that are less susceptible to fall prey to a lack of precision in instructions 
(such as the (in)famous peanut butter and jelly sandwich activity). Such precise 
activities may include dance routines or rules for how to play simple games 
(and pick a winner) or navigating a path on a grid. Curzon et al. (2020) suggest 
that as students progress through levels of schooling, precision, completeness, 
cohesion, and elegance will improve. Kamdar et al. (2020) found unplugged 
activities to be useful in helping preschool learners (ages 3–5), including some 
at the preliterate state, by engaging them – both at home and in school – in 
algorithmic thinking (often using navigational activities that also build crucial 
spatial thinking skills), task decomposition, and abstraction (through sorting 
and labeling by grouping multiple objects according to common themes or 
characteristics).

Additionally, helping students experience CT and programming concepts 
in contexts outside of coding through engagement in unplugged activities and 
contexts that are familiar and tractable before they experience them in coding, 
has been shown to be beneficial (Hermans & Aivaloglou, 2017). There are ex-
amples of digital (non-programming) microworlds and online games designed 
specifically to target one or more aspects of CT skills. For example, in their 
research, Grover and colleagues successfully demonstrated the use of designed 
non-digital and digital activities to engage learners in the ideas of variable and 
variation, multiple forms of operators and expressions (arithmetic, relational, 
string, and Boolean), and iteration – ideas that are foundational to CT and 
coding (Grover, Jackiw, & Lundh, 2019). Their digital activities drew inspi-
ration from the research of the benefits accruing from conceptual exploration 
with dynamic representations in mathematics education such as the Geometer 
Sketchpad ( Jackiw, 2004).

In a similar vein, there are several digital game-based environments that 
help learners engage in elements of CT. Although research on the results of 
game-based experiences for learning is mixed, syntheses of the game-based 
learning literature have found that games can indeed yield positive learning 
outcomes across several learning contexts. Zoombinis (Rowe et al., 2017) is an 
example of a game that engages learners in logical and algorithmic thinking. 
Taylor et al. (2019) developed a toolkit to fuse block-based programming with 



Computational Thinking Today 25

game-based learning to promote CT. Given the social nature of games, game-
based learning is often designed and engineered to also help promote equity 
and collaboration (Boyer et al., 2015). 

Two key ideas are of utmost importance in the context of unplugged and
non-programming approaches to CT engagement. First, a move from un-
plugged to coding activities at some appropriate juncture or grade level is 
absolutely necessary in order for learners to appreciate the power of com-
putation and automation, as well as the specific abstractions (data and
procedural) that play a role in computational solutions. Thinking in layers
of abstraction (Armoni, 2013) helps learners view computational solutions 
in different forms and also appreciate the need for data abstractions that
are suited to the task and tool at hand. Programming also affords learners
the opportunities to create and share their own computational creation
thus allowing for computational participation (Kafai, 2016) and computa-
tional action (Tissenbaum, Sheldon, & Abelson, 2019). Such engagement
is seen as beneficial to encourage learner agency and participating in com-
puting for community and self. Second, it is critical that learning designs
help bridge to and from the earlier non-programming experiences and
coding experiences (Curzon & Grover, 2020; Hoyles, 2020) in order to
aid learners in the transfer of learning and making the conceptual links
between experiences.

 

 
 

 
 
 

 

 
 
 
 

Unplugged activities have been shown to be beneficial especially for non- 
specialist teachers in preparing to integrate CT (Huang & Looi, 2020; Yadav 
et  al. 2017), and as a result, unplugged activities are often included as part of 
teacher professional development (PD) on CT integration (Araujo, Floyd, and 
Gadanidis, 2019). Ketelhut et al. (2020) found that teachers want practical ex-
amples of activities they could use to incorporate CT into elementary science 
that were either unplugged or used tools that were already available to them. 
Section “Open Questions and Need for Further Empirical Inquiry” addresses 
open  research questions related to unplugged approaches to developing CT skills.

Integrating CT in Non-CS Classrooms

It is in all the contexts outside of CS classrooms that computational 
thinking (CT) truly shines with its generativity. From music, maths, so-
cial studies, history, language arts and throughout the sciences and engi-
neering, curricular ideas can come alive with CT.

(Grover & Pea, 2018, p. 32)
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Many argue that CT in its avatar as a generative problem-solving skill is truly 
visible in contexts outside of CS. This practice of CT serves the realm of Com-
putational X – the integration of CT to enable/enrich learning and application 
in a whole host of other disciplines, mainly through the vehicle of program-
ming, and automating data and procedural abstractions and models in other 
disciplines.

Papert’s use of the phrase Computational Thinking in both Mindstorms  
(Papert, 1980) and Situating Constructionism (Papert & Harel, 1991) was made 
in passing and never explained. However, one can surmise from the context and 
his writings that he meant “thinking with a computer” or using the computer 
“as a tool to think with”, to engage with topics/concepts in other disciplines. 
In fact, his seminal book and the theses leading up to it were aimed largely 
at developing a “mathematical way of thinking (MWOT)” and how children 
could use programming to develop MWOT (also see Papert (1972)). However, 
Papert’s view of CT was centered on algorithmic or procedural thinking. It 
did not delve deeply into how computing could help children build models 
involving data, data organization, or data representations; or with abstractions 
and  generalizations – although these were well within the purview of compu-
tational exploration of mathematical ideas.

In contrast, Andrea diSessa, whose context for computational learning and 
computational literacy was science (mostly physics), articulated the value of 
using computing to help students’ reasoning, modeling, and abstraction abil-
ities. Representations, and the computer as the “protean mother of meta- 
representational systems” (diSessa, 2001, p. 183), were at the heart of diSessa’s 
work to help learners engage in multiple representations in order to gain a fuller 
and more flexible understanding of the scientific concept at hand. More impor-
tantly, diSessa’s work advocates for not fixating on programming and the com-
puter. In Changing Minds, diSessa (2001) emphasized both the “cognitive” and 
“social” aspects of computational literacy. In more recent writing, Li, diSessa, 
and colleagues argue for making CT more about thinking than computing be-
cause “the reconceptualization of CT [beyond Wing’s articulation], as a model 
of thinking, makes its integration in all education a possibility” (Li et al., 2020).

In the same vein as diSessa, Weintrop, Beheshti, Horn, Orton, Jona, 
Trouille, and Wilensky (2016) operationalized the computational model-
ing view of CT based on two decades of research on  computer-based sys-
tems modeling led by Uri Wilensky and his research group. They presented 
a taxonomy that defined “computational thinking in mathematics and sci-
ence” as including data practices, modeling and simulation practices, com-
putational problem-solving practices (including programming), and systems 
thinking practices. Several projects, especially those in science contexts that 
involve modeling and simulation and/or a focus on data practices benefit from 
this taxonomy. Netlogo, created by Uri Wilensky, (along with its variants  
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such as StarLogo) was among the first computing environments that embodied 
a pedagogy aimed at engaging in the disciplinary STEM practice of developing 
computational models and simulations, and offered learners tools to think in 
terms of computational models and engage in the practices outlined by the tax-
onomy. Curricular interventions such as Project GUTS leveraged these tools 
to include modeling and simulation in middle school science and social studies 
program.

Denning’s recent writings on CT highlight that the sciences are where CT was 
born, and that computational science has been the shining example and the best 
argument for CT as a valuable way of bringing CS and computers into non-CS 
disciplines (Also See Chapter 1 for a discussion on historical roots of CT). He 
channels Aho (2012) to argue that computational modeling – a practice integral 
to computational science – be called out as a key part of CT. Although the value 
of computational modeling in professional fields from economics to finance to 
medicine is beyond question, many in K-12 settings would likely take issue with 
Denning’s formulation. It not only ignores the validity of unplugged approaches 
to CT, but it also sidesteps a view of CT as a disciplinary thinking skill for deeper 
engagement in CS classrooms. In contrast, Sengupta et al. (2020) suggest that 
there is value in framing coding as a modeling in STEM classrooms and they rea-
sonably argue that embodied modeling and non- computational materials should 
be viewed as representational and cognitive amplifications of computational code. 
The following section showcases the plurality of approaches for integrating CT.

Approaches for CT Integration in Other Disciplines

Not surprisingly, science and mathematics classrooms have provided the most 
prolific contexts for CT integration. In addition to Project Growing Up Think-
ing Scientifically, or GUTS, (projectguts.com/) and CT-STEM (ct-stem.north-
western.edu/), several new efforts have pursued the goal of integrating CT and 
computing in STEM domains for secondary students (though not all draw on 
Weintrop et al., 2016). These include Bootstrapworld (www.bootstrapworld.
org/), the STEM Coding project (u.osu.edu/stemcoding/), C2STEM (c2stem.
org), EcoMOD (Jeon et al., 2020), among others. The C2STEM curriculum and 
environment uses domain-specific blocks specially designed in Snap! program-
ming, along with guidance from both Grover and Pea (2013) and Weintrop et al. 
(2016) to design for and measure synergistic learning of CT and science (Hutchins 
et al., 2020a). Other efforts, including Dominguez, Grover and Vahey (2020), 
Sengupta, Dickes, and Farris (2020), Lavigne, Orr, and Wolsky, (2018), Benton, 
Hoyles, Kalas, and Noss (2016), (2018), Moore, Brophy, Tank, Lopez, Johnston, 
Hynes, and Gajdzik (2020), Waterman, Goldsmith, and Pasquale (2020), Yadav, 
Larimore, Rich, and Schwarz (2019), have attempted to integrate coding and CT 
into science and math in primary and pre-primary school classrooms.

http://projectguts.com
http://ct-stem.north-western.edu
http://ct-stem.north-western.edu
http://www.bootstrapworld.org
http://www.bootstrapworld.org
http://u.osu.edu
http://c2stem.org
http://c2stem.org
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Not all STEM integration efforts rely on modeling and simulation to guide 
integration into STEM learning. Wendell et al. (2020) designed an interdisci-
plinary school curriculum in which students design a search and rescue robot 
(using physical computing) that can dig through the rubble. They accomplish 
this through exploring animal structure-function relationships using CT prac-
tices like decomposition and abstraction and then combining those findings 
with engineering design practices to build robots using Hummingbird con-
trollers. Hadad et al. (2020) also used a physical computing approach to CT 
integration in physics. Other examples favor a data-driven approach to STEM 
and CT integration (e.g., Krishnamurthi et al., 2020; Wilkerson & Fenwick, 
2017). Yet another approach taken by some researchers is to leverage the overlap 
between systems thinking and CT, to integrate these thinking skills in STEM 
learning (Damelin et al., 2017; Puttick & Tucker-Raymond, 2018).

There are compelling examples of CT integration in non-STEM subjects, 
such as social studies, as well. Cannell, Tofel-Grehl, and Searle (2020) describe 
how upper elementary students worked with first-hand data sources, engaged 
in data analysis and transformations, used visualization tools and physical com-
puting with Circuit Playground Express to explain population shifts & explore 
weighty and d ifficult-to-discuss topics such as the great migration of Blacks 
from the American south during the Jim Crow era. Similarly, the Bootstrap: 
Data Science curriculum centers data for answering historical questions in ways 
students could not otherwise, for example, what caused the fall of the Mayan civiliza-
tion? Or how is the history of food production in the US tied to immigrants’ backgrounds? 
Through choosing appropriate narratives and stories, the curriculum helps set 
the context for data collection, analysis, and visualization using spreadsheets.

Recently Caplan et al. (2020) suggested moving beyond a mere definition of 
what students needed to learn in integration settings (as defined by Weintrop 
et al., 2016). Their work extends our understanding of what discipline-based 
CT looks like for “competent outsiders” belonging to other disciplines, under-
standing ways in which students make sense of CT in integration settings, and 
what a learning progression might look like.

CT integration is often driven by the need to marry data, representations, 
and algorithms with concepts from the host domain. Programming these rep-
resentations and algorithms affords engagement with – and sense-making of – 
those concepts, however, engaging in designing those data organizations and 
data representations can be done outside of coding. Gu et al. (2020) demon-
strate the value of engaging in data organization in helping learners wrestle 
with data reasoning aspects of CT. Similarly, Grover (2018) presents an exam-
ple that draws on the computational literary analysis of Shakespeare’s Hamlet 
by Stanford professor Franco Moretti, to demonstrate how representations 
from social network analysis can be combined with literary analysis through 
the use of graphs (closed networks with nodes and edges) for CT integration  
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in Language Arts. The exercise of converting a story into a network could be at-
tempted computationally, but it is a valuable cognitive exercise that could also be 
done manually. Extending Moretti’s example, Grover demonstrates how students 
can subsequently transform graphs into mathematical abstractions (adjacency ma-
trices) that can be coded as two-dimensional arrays or data structures in a pro-
gramming environment. Thus, an unplugged activity could be extended through 
a plugged one; however, both versions can afford learners novel experiences into 
modeling and analyses of literary narratives and the relationships of the characters.

The Special Issue of the Journal of Science Education and Technology Com-
putational Thinking from a Disciplinary Perspective (Lee et al., 2020) as well 
as recent symposia on STEM integration with CT (Grover et al., 2020; Grover, 
Fisler, Lee, & Yadav, 2020) share many other efforts and exemplary works in 
STEM and CT integration.

Toward Coherence to Support CT Integration into  
School Subjects

Recently, scholars have attempted to provide more coherence around the vari-
ous definitions and approaches to teaching CT to emerge with frameworks that 
can help teachers better understand how to integrate CT in programming and 
across other subjects. Here we describe Malyn-Smith et al. (2018)’s articulation 
of CT from a disciplinary perspective, Grover (2020)’s CT Integration frame-
work, and PRADA (Dong et al., 2019) – an acronym for Pattern Recognition, 
Abstraction, Decomposition, and Algorithms. Additionally, see Chapter 3 in 
this volume by Azeka and Yadav on a CT integration model and Chapter 5 by 
Tannert, Lorentzen, and Berthelsen on CT in K-12 as an independent subject 
vs. integrating it in school subjects.

Malyn-Smith et al. (2018) attempted to examine and articulate what CT 
looks like from within a discipline in an effort to move away from the CS- 
centric view of CT and better guide integration efforts. They examined the 
work of ‘Computational X’ professionals and examined descriptions of curric-
ular units that integrated CT provided by teachers and researchers (as part of a 
2-part NSF-funded workshop series). They concluded that individual CT com-
ponents were rarely deployed in discrete capacity in professional work. Instead, 
“CT integration practices” came into play that included: understanding complex 
systems; innovating with computational representations; designing solutions 
that leverage computational power and resources; engaging in collective sense- 
making around data; and (making predictions) and understanding potential con-
sequences of actions. In my view, these practices are perhaps the best articulation 
of the “why” or benefits of integrating CT and computing into other subjects.

More recently, Grover (2020) further built on Malyn-Smith et al. (2018) 
and drew on several CT integration projects to synthesize the interconnected  
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components of integration to articulate CTIntegration (Grover, 2021a), a 
comprehensive framework for integrating computing and CT in disciplinary 
learning in school. The framework draws on Shulman (1987)’s seminal ideas 
on teacher’s pedagogical content knowledge (PCK) related to a domain and 
is inspired by Mishra and Koehler (2006)’s Technological Pedagogical Con-
tent Knowledge (TPCK) framework to integrate technology into school 
learning. It provides guidance on how researchers and teachers can attend 
to three critical intersections of the host domain or discipline ( content, 
concepts, and practices), CT (concepts and practices), and pedagogy (see 
 Figure 2.1). By foregrounding domain PCK, CT PCK (including examina-
tion of appropriate computing tools), and the intersection of discipline and 
CT (with guidance on how to identify productive points of intersection), the 
framework shows that CT integration can serve many purposes in teaching 
various subjects, including the creation of computational artifacts, sense- 
making through data and modeling, as well as the critical examination of 
phenomena. The framework is intended to support not only curriculum and 
assessment design for CT integration, but also research and teacher prepara-
tion efforts. Grover (2021a) also examines and evaluates existing integration 
efforts through the lens of the framework, and highlights that the success 
of curricula that do a good job of integrating CT depends on how well 
the three intersections are designed. Figure 2.1(B) presents a view of the 
framework that acknowledges the growing emphasis on, and opportunities 
provided by data as the linchpin for integration. Using the framework, Gro-
ver underscores the need to attend to issues of tool choice for integration 
including task-specific versus general-purpose languages, issues of cognitive 
load, and designing for bridging and transfer, and the importance of framing 
in CT integration.

Dong et al. (2019) proposed PRADA “as a practical and understandable 
way of introducing the core ideas of CT to non-computing teachers in order 
to support them in infusing CT into their curricula”. Their goal was to create 
a definition of CT that could be used for integration into existing curric-
ula and generalizable to any discipline and be easily understood by primary 
and secondary teachers (the majority of whom have limited CS knowledge). 
They used definitions of CT that were popular in literature and practice to 
find common ground (Figure 2.2). The PRADA acronym stands for Pattern 
Recognition (observing and identifying patterns, trends, and regularities in 
data, processes, or problems), Abstraction (identifying the general principles 
and properties that are important and relevant to the problem), Decompo-
sition (breaking down data, processes, or problems into meaningful smaller, 
manageable parts), and Algorithms developing step by step instructions for 
solving [a problem] and similar problems. They argue that data practices and 
modeling and simulation are also captured within the elements of the PRADA 
framework.
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FIGURE 2.1  (A and B) CTIntegration conceptual framework for aiding design, 
evaluation, and research on CT Integration Grover (2021a).

Shuchi Grover.
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Open Questions and Need for Further Empirical Inquiry

This section outlines open questions that the education community continues to 
wrestle with even as work on CT and its implementation continues to expand. 
Despite the enormous progress for CT learning in various forms and various 
contexts in K-12 school education, as well as synthesis efforts such as those de-
scribed above that help in instructional design, teaching, and research, there 
remain open questions that can and must be answered through empirical inquiry.

Despite the growing popularity of unplugged approaches to teaching CT, we 
lack a robust understanding of the affordances of unplugged approaches to CT. 
Huang and Looi (2020) also point out that many unplugged activities and CT 
assessments are heavily oriented toward a coding view of CT (see Grover, 2017;  
Tang et  al., 2020). Among many other open questions related to unplugged 
engagement with CT, they ask, how do we assess CT in unplugged activities without 
using code representations? Our work with pre-kindergarten learners forced us to 
think in non-coding terms, resulting in a scenario-based assessment (Grover, 
Dominguez, Kamdar, Leones, Vahey, & Gracely (2021)). Much work remains 
to also be done for the assessment of learning in contexts where CT is taught 
through integration in other subjects. Researchers and teachers routinely seek 
assessments of CT that are not tethered to a specific coding environment, and 
few such exist. For STEM integration projects, it appears that every context 
requires its own ways of measuring CT learning because when integration is 
done well, CT is tightly intertwined with the domain and appropriate CT tools 
(Grover, 2020). This is a space that continues to need more work.

Transfer of learning (or lack thereof ) has often been offered (in my view) as 
a strawman argument by critics of CT. As explained in Grover and Pea (2018), 

FIGURE 2.2 PRADA framework derived from extant definitions for CT integration.

Dong et al. (2019).
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the learning sciences advocate that learning designs consciously attend to trans-
fer; transfer needs to be mediated through empirically established techniques that 
call for, among other things, making explicit connections between the original 
and transfer learning contexts. My own work, although focused narrowly on al-
gorithmic elements and coding, demonstrated transfer from block to text-based 
programming. In recent work, Hutchins et al. (2020a) demonstrated that students 
used a discrete time-step approach on a novel physics problem after an intervention 
involving designing computational simulations in Snap! that involved using the 
“delta-t” time-step variable. Hutchins et al. (2020b) demonstrated that another 
group of students was able to reason about Netlogo simulations after the same in-
tervention. They also show evidence of improvement in students’ modeling skills 
as the intervention progressed through various units, demonstrating the notion of 
dosing, and CT skills-building over time. We need more robust studies aimed at 
studying the transfer of CT in interventions that are explicitly designed to mediate 
for transfer of these problem-solving skills. We need to better understand how to 
bridge problem-solving in new contexts with earlier (perhaps unplugged) experi-
ences. We also need to understand how much dosing learners need in order to be 
able to apply CT skills to new (near- and far-) transfer contexts.

More work is needed in the context of integration of CT with other sub-
jects emerges as a preferred approach to teaching CT. Although there has been 
work done to define learning trajectories of elements of CT (Rich et al., 2017, 
2018, 2019), these are theoretical (based on prior literature) and need to be em-
pirically validated, and may not always translate to CT integration settings.  
Grover (2018) proposed a theoretical progression of CT integration activities from 
simple to complex based on her work in Pre-K through high school integration 
projects, but this too needs to be fleshed out further with additional empirical in-
quiry. Teacher preparation, especially in integration settings in secondary grades, 
also needs more attention. While there is a growing body of literature on teacher 
training for CT integration in elementary school settings much work needs to be 
done for integration in secondary grades where integration is more complex and 
often includes coding, modeling, and simulations, (Grover, 2018, 2020).

Finally, we need to push on a few directions hitherto explored by only a few. 
There is an urgency to understand the role of culture and phenomenology in CS 
and CT pedagogy. The importance of appropriate framing of CT integration 
in school subjects cannot be overemphasized. It impacts learners’ relationship 
with computing as well as subject learning through computing. For example, 
Pierson, Brady, and Clark (2020) framed computational models as interactive 
participants in a sixth grade STEM classroom and Sengupta et al. (2020) provide 
evidence that phenomenological approaches can be useful for framing CT in 
K12 STEM classrooms – for example, framing programming as designing math-
ematical measures of change, and framing coding as designing for authentic use. 
Such framing, as Sengupta et al. (2020) contend, can also help make CT learning 
more meaningful in classrooms with minoritized populations. Barring a few 
efforts (e.g., Madkins et al., 2019), the field has not engaged deeply in how cul-
turally relevant pedagogy can be more widely employed in developing CT skills 
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in various contexts. Relevant to this is also the role of learners’ natural language, 
and how it can and should be leveraged for authentic engagement with CT as 
demonstrated in the trans-languaging work of Vogel et al. (2019).

Ultimately, we also need to continue to examine why we teach CT and CT’s 
relationship with the teaching of CS and coding in order to be guided on the what 
and how of developing this skill among learners at various ages and stages. Cod-
ing is no doubt a new and valuable skill for K-12 classrooms. It is worth bearing 
in mind that we teach computing to develop informed citizens in a fast-changing 
and increasingly pernicious world driven by computing where biases are being 
replicated in algorithms, and the loss of privacy or reputation may be but a few 
clicks away. We need to teach computational thinking and problem-solving in 
ways that transcend programming language (which may not be used in profes-
sional settings today, or may be obsolete tomorrow if in use today) and can sur-
vive the impending onslaught of artificial intelligence systems with the capability 
to generate much of the code written by humans today. What learners must take 
forward are habits of mind, analytical thinking and problem-solving strategies, 
and sensibilities of design and data gleaned in CS and non-CS classrooms.

Closing Remarks

As this chapter has described, CT is a thinking skill that can be used for problem 
solving in various domains, for the creation of artifacts and creative e xpression – for 
oneself or one’s broader communities, and for sense-making (increasingly with data) 
in various contexts. As such, it has a place in all school subjects (including CS). It can 
be learned in both CS and non-CS classrooms, and it bears the potential to enrich 
learning in all settings. Teaching CT ensures deeper learning of CS disciplinary 
practices and skills (programming among others) in CS classrooms and leveraging 
CS problem-solving approaches (representations, programming, and computational 
modeling perhaps being the most valuable) in non-CS settings. Ideally, learners 
should experience CT often and in diverse settings, and in increasingly sophisti-
cated ways, over the course of their K-12 journey. In the spirit of pedagogical plural-
ity and epistemological pluralism, experiencing and applying CT in different ways 
(in coding contexts, unplugged activities, as well as games and digital interactives), 
and for different purposes (for sense-making, innovation, and problem-solving, for 
creative expression, and for social participation and social justice through comput-
ing) – helps diverse learners at different ages and stages engage meaningfully with 
CT. As with any competency, skills are built over time. Problem- solving skills too 
are honed through multiple applications, in multiple forms, and multiple contexts. 
And so it is with CT. The idea of dosing in educational interventions suggests that 
the more learners engage in CT in various settings, the deeper they understand 
abstraction and representation, and algorithms (through coding and non-coding 
activities). There remain questions about teaching and learning CT that must be 
answered through robust empirical inquiry. Judging by the revelations in section 
“Introduction: From Academia to Mainstream”, however, the idea of CT is thriv-
ing and growing in acceptance. CT is, indeed, here to stay.
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